

VideoClusterNet: Self-Supervised and Adaptive Face Clustering For Videos

Contributions

- A fully self-supervised video face clustering algorithm, which progressively learns robust identity embeddings for all faces within a given video face dataset.
- A self-supervised model finetuning approach that removes any dependence on manual ground truth cluster labels.
- A deep learning-based similarity metric for face clustering, which automatically adapts to a given model's learned embedding space.
- A novel video face clustering algorithm that does not depend on any user-input parameters.
- Release of a novel video face clustering benchmark dataset with extreme challenging face clustering scenarios in movie domain.

Character Face Clustering in Movies

Objective: Given an entire movie sequence, cluster main character face tracks across common facial identities.

Movie domain specific challenges: Extreme variations across character face pose, lighting conditions, heavy occlusion, blur and facial appearance.

Varying Parameter Pose Lighting (Partial) Occlusion Expression Appearance Change

Face Track Preprocessing

Step 3: Motion Track Crop Sampling (Sample face crops within track after every fixed frame interval) Devesh Walawalkar, Pablo Garrido

Flawless Al Inc.

Self-Supervised Face ID Model Finetuning

Coarse Track Matching

loss: -1*softmax(vec_1/temp_1)*log_softmax(vec_2/temp_2) temp_* : softening temperature

Literature Datasets: Big Bang Theory S01 & Buffy The Vampire Slayer S05

Method	BBT S01 Episode							Method	BVS S05 Episode						
wiethou							Constitution		S5E1	S5E2	S5E3	S5E4	S5E5	S5E6	Combined
	SIEI	SIEZ	SIE3	SIE4	SIED	SIE0	Combined	HMRF [55]	-	50.3		-	10 	-	-
SCTL [54]	66.48	-	-		-	-	-	WBSLRR [56]	-	62.7	-	-	-	-	_
TSiam [41]	96.4	-	-	75 — 17	-	-	-	TSiam [41]	-	92.46	-	-	-	-	
SSiam [41]	96.2	-	-	-	-	-	-	SSiam [41]	-	90.87	-	-	-	-	
MLR [4]	95.18	94.16	77.81	79.35	79.93	75.85	83.71	CP-SSC [44]	-	65.2	-	-		-	-
BCL [47]	98.63	98.54	90.61	86.95	89.12	81.07	89.63	MvCorr [43]	-	97.7	-	-	12 C	-	_
CCL [42]	98.2	-	_	-	-	_	-	MLR [4]	71.99	61.27	66.60	67.07	69.59	61.72	66.37
VCTRSF [53]	99.39	99.84	97.58	96.41	98.47	93.33	94.20	BCL [47]	92.08	79.76	84.00	84.97	89.05	80.58	83.62
	00.00		01.00	00.11	00.11	00.00	01.20	CCL [42]	-	92.1	-	-	-	-	-
Ours*†	99.70	99.67	98.60	98.80	99.10	97.10	98.70	Ours*†	96.30	99.10	98.70	97.43	99.00	96.78	96.10

Release of MovieFaceCluster Dataset

		Movie											
	An	Armed	Angel	Death	American	The	Under	The	S.M.A.R.T.				
Method	Elephant's	Response	Of The	Do Us	Fright	Fortress	The	Hidden	Chase				
	Journey		Skies	Part (2019)	Fest		Shadow	Soldier					
	(2019)												
	Weighted Cluster Accuracy (%) & Pred Cluster Ratio (Pred / GT)												
TSiam [41]	90.7 & 1.44	84.9 & 1.36	77.1 & 0.62	92.9 & 1.57	89.3 & 0.83	68.6 & 0.69	71.8 & 2.11	90.7 & 1.33	79.6 & 1.70				
SSiam [41]	88.1 & 1.61	86.6 & 1.21	75.5 & 0.59	$94.4 \ \& \ 1.28$	86.2 & 0.78	71.1 & 0.73	68.3 & 2.33	88.7 & 1.24	82.3 & 1.80				
JFRAC [61]	91.4 & 1.33	85.2 & 1.50	73.4 & 0.62	90.8 & 0.71	91.5 & 0.86	65.3 & 0.77	73.1 & 2.00	92.6 & 1.19	85.8 & 1.70				
CCL [42]	89.5 & N.A.†	89.7 & N.A.†	75.0 & N.A.†	95.4 & N.A.†	87.2 & N.A.†	62.7 & N.A.†	77.4 & N.A.†	84.0 & N.A.†	89.9 & N.A.†				
VCTRSF [53]	96.3 & N.A.†	92.2~& N.A.†	77.7 & N.A.†	96.5 & N.A.†	91.3 & N.A.†	78.8 & N.A.†	78.7 & N.A.†	94.4 & N.A.†	88.4~& N.A.†				
Ours	97.2 & 1.11	94.1 & 0.93	85.9 & 0.72	98.0 & 1.14	97.6 & 0.92	89.3 & 1.02	82.5 & 1.88	98.5 & 1.04	93.8 & 1.50				

EUROPEAN CONFERENCE ON COMPUTER VISION

ΜΙΙΑΝΟ 2 0 2 4

Results

T-SNE Cluster Visualizations - Left Ground Truth, Right Predicted